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EXECUTIVE SUMMARY

This paper examines security implementations that support the objectives of information 

confidentiality, integrity, and availability (the CIA triad1). The focus of this paper is on 

security implementations for embedded systems.

The implementations described are widely applicable to embedded systems in a variety 

of markets, including aerospace,2 automotive,3 defense,4 industrial,5 medical,6,7 and 

networking8 and are directly applicable to the protection of the intellectual property (IP) of 

the vendor.
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THE CIA TRIAD

The CIA triad provides foundational security principles for the 

protection of an asset. Its three components can be thought of as 

similar to the components of security for the contents of a home:

• Confidentiality: Defined as maintaining the privacy of an asset. 
Solid doors, walls, and window coverings provide privacy for the 
contents of a residence.

• Integrity: Defined as maintaining the content of the asset. An 
alarm system, a fence, and locks on the doors and windows 
maintain the integrity of a residence, such that the contents of 
the residence are kept intact.

• Availability: Defined as the accessibility of the asset. The con-
tents of the residence are available to the residents via pass-
codes to the alarm system and keys to the door locks.

Each CIA triad principle can be further broken down into 

categories, which can then be broken down into implementations. 

Figure 1 shows the categories for each of the principles. The 

remainder of this paper will discuss these categories and how 

each can be used to secure an embedded system.

Application of the CIA triad begins with a security assessment. 

The security assessment determines which CIA implementations 

are required based on vulnerabilities, risks, regulatory 

requirements, and IP protection needs. The security assessment 

balances those needs against cost, performance, and the 

operational environment. The security assessment will provide 

the security policy, which defines the security objectives for the 

embedded system: what the security-related events are, how they 

are to be constrained, when they are to be reported, and what 

actions to take in response to the events. The security assessment 

also provides processes within the development cycle to assure 

that the security-related principles are implemented.

DEFENSE-IN-DEPTH APPROACH 

No single security principle by itself can provide complete 

protection for an embedded system.9 Layering of defenses 

provides strong, multifaceted protection for the embedded 

system. The concept of layering these principles together is known 

as defense in depth. Many factors dictate the security components 

needed to protect an embedded system; a security assessment 

will uncover the required components.

CONFIDENTIALITY FOR EMBEDDED SYSTEMS

Confidentiality implementations protect the privacy of data. This 

protection is applicable to data passing to/from the embedded 

system (data in motion), data that are stored on the embedded 

system such as on disk drives and/or in nonvolatile memory (data 

at rest), and data that are being processed on the embedded sys-

tem (data in process). Confidentiality can be partitioned into three 

categories: privacy, separation, and key management (as shown in 

Figure 2, along with their associated implementations).

Protecting the confidentiality of data in an embedded system 

can be a regulatory requirement, a method to protect IP, or an 

industry-recommended requirement (for example, in aerospace,10 

automotive,11 defense,12 industrial,13 medical,14 and networking15).

Privacy Implementations

Privacy is achieved using cryptographic encryption algorithms. 

An authorized individual or resource can restore encrypted data 

to its original form (decryption). Just as there are different types 

of door locks,16 there are different types of encryption algorithms. 

Two following types of encryption algorithms can be used for 

confidentiality:17

• Symmetric algorithms
 – Stream cipher: Processing data one datum at a time
 – Block cipher: Processing multiple data one group at a time

• Asymmetric (also known as public key) algorithms
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Figure 4. Asymmetric cryptographic workflow

The strength of the privacy provided is based on the combination 

of the algorithm and the length of the associated key.18 Industry-

approved encryption algorithms and key lengths are provided in 

Barker, “Transitions: Recommendation for Transitioning the Use of 

Cryptographic Algorithms and Key Lengths.”19

The length of time in which a cryptographic key should be used is 

called a cryptoperiod. Cryptoperiods vary based on the algorithm, 

key length, usage environment, and volume of data that is being 

protected. Guidance for cryptoperiods can be found in Barker, 

“Recommendation for Key Management — Part 1: General 

(Revision 4).”20

Symmetric cryptographic algorithms use the same key for 

both encryption and decryption processing. An example of a 

symmetric algorithm is the Advanced Encryption Standard 

(AES).21 AES is an industry-approved symmetric algorithm22 for 

providing confidentiality of sensitive data. Figure 3 shows a typical 

symmetric cryptographic workflow. In the embedded arena, 

sharing a cryptographic key can be challenging because of the 

large number of end points involved. This challenge is addressed 

in the “Key Management Implementations” section of this paper.

Asymmetric data encryption algorithms are also called public 

key algorithms. This type of algorithm requires two keys (a key 

pair): one that is kept private and one that can be made public. 

The private key is kept tightly protected and is accessible by as 

few individuals as possible. The public key can be accessible 

by others but does require a level of protection in an embedded 

environment, as its corruption could cause a denial-of-service 

(DoS) attack. The asymmetric algorithm provides for encryption 

using the public key and decryption using the private key. Figure 4 

presents an asymmetric cryptographic workflow.

Asymmetric cryptography requires more processing power and 

longer-length keys to achieve a level of security comparable 

to symmetric cryptography. For this reason, asymmetric 

cryptography is typically used for the generation and verification 

of digital signatures. This use will be discussed in the “Integrity for 

Embedded Systems” section of this paper.

Data in an embedded system can be in one of three states: in 

motion, at rest, or in process. Data in motion is data passing to/

from the embedded system, data in process is data generated or 

consumed within an embedded system, and data at rest is data 

stored on the embedded system.

Data-in-Motion Privacy

Data passed over the network can be more than just data 

generated or consumed by an embedded system. Protection of 

management data transferred to and from the embedded system 

is just as critical. Updates, patches, telemetry, configuration data, 

and logging information can be of significant value to an attacker, 

so protection of management data is paramount to securing the 

embedded system. An attacker will monitor the behavior of the 

embedded system when stimuli are applied during attacks; by 

observing the response from the system,  the attacker can plan 

the next step in the attack process.

Many implementations for protecting the confidentiality of data 

in motion are available. These implementations can operate 

at different levels of the network stack — for example, Internet 

Protocol Security (IPsec),23 Transport Layer Security (TLS),24 and 

HyperText Transfer Protocol Secure (HTTPS)25 — and these just 

scratch the surface, as shown in Figure 5. Recommendations 

for securing data in motion are provided in McKay and Cooper, 

“Guidelines for the Selection, Configuration, and Use of Transport 

Layer Security (TLS) Implementations,”26 using the TLS protocol.
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Data-at-Rest Privacy

Protection of data stored on an embedded system, whether on 

a disk drive, a USB stick, or in nonvolatile RAM, can include the 

data produced or consumed by the embedded system, patches, 

updates, telemetry data, and logging information. These data can 

be very valuable to attackers if stolen and, if corrupted, can also 

disrupt the operation of the embedded system, causing a DoS 

attack.28

Protection of data at rest is typically implemented by the use of 

symmetric cryptography. Symmetric cryptographic algorithms 

such as AES are ideally suited for protecting data at rest, as 

they are fast and can accomplish strong levels of protection 

using shorter key lengths than asymmetric cryptography. The 

symmetric key, however, must be tightly protected on the device to 

maintain the privacy of the data. Secure storage of the symmetric 

key is best accomplished using hardware assistance, such as 

the Trusted Platform Module29 or the Secure Key Management 

Module of an NXP (formerly Freescale) QorIQ processor.30 If 

hardware assistance is not available for key storage, a software 

implementation that utilizes obfuscation to achieve its protection 

can then be used.

The usage environment of the embedded system may have an 

impact on the generation of the key. For example, if the data need 

to be recovered and the embedded system becomes inoperable, 

the ability to have a duplicate key is then required. Conversely, if 

the data are isolated to the embedded system and do not need 

to be recovered, the key can be randomly generated and stored 

solely on the embedded system in a hardware-assisted protected 

mechanism.

Sanitization

When critical data are no longer needed on the embedded system, 

they should be sanitized to prevent loss of privacy. To minimize 

the potential attack surface, the data’s memory locations should 

be overwritten, including the stack. The simplest method of 

keeping the stack sanitized is to initialize all local variables within 

a function when the variables are defined. As the functions are 

executed, the stack is auto-sanitized as a result.

Because the use of cryptographic algorithms inherently requires 

the generation and use of a cryptographic key, the means to 

destroy or erase this key and associated data are required. By 

encrypting all data at rest on the embedded system, sanitization 

can be completed by the destruction of the cryptographic key(s) 

used to protect that data. Once the key is destroyed, the data 

cannot be restored and will remain nonsensical. This approach 

is called cryptographic erase.31 Destruction of the cryptographic 

key(s) is based on the hardware device, if hardware is used. If not, 

a series of overwrites of alternating data patterns over the key 

storage area can be used.

Separation Implementations

The architecture of the embedded system provides a level of 

confidentiality by keeping independent functions isolated from 

each other. For example, the function that provides connectivity to 

the internet can be kept separate from the function that accesses 

the sensors the embedded system is managing, with strictly 

limited information flows between the two. This constrains an 

attack on the internet connectivity function from impacting the 

sensor management function.

Partitioning (Data in Process)

Isolating processes on the system provides a level of 

confidentiality by assuring that each process cannot access 

or interfere with other processes. A typical implementation of 

separation uses a Type 1 hypervisor that resides directly above 

the processor. The hypervisor defines partitions by assigning 

resources (memory, devices, cores,  etc.) to each partition and 

executes the process(es) within each partition. The processes can 

execute within the defined partition and maintain the privacy of its 

data from other processes on the processor.

Communication channels between partitions can be provided by 

the hypervisor to include shared memory regions or an inter-

partition communication mechanism. These communication 

channels can be restricted in terms of direction of flow, access 

rights, and whether or not the hypervisor itself is involved in the 

communication flow.

The assignment of resources and definition of the communication 

channels is defined in the hypervisor’s security policy. 
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Figure 5. Security protocols and network layers27
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The security policy creates the time and space allocation for 

each partition, along with the channels of communication, if any. 

This communication policy can be as high level as “yes” or “no” or 

granular enough to constrain the size of the message, the data 

rate, and the direction of the communication path.

Covert Channels

Care must be taken in the implementation and usage of 

communication channels. An unintended path of communication 

could be created, exposing critical data to an attacker. These 

unintended communication paths are called covert channels and 

come in two forms: covert storage channels and covert timing 

channels. A covert storage channel is created when data are 

passed against the intent of the security policy. An example of 

this is using the IP packet header to transmit data: A covert timing 

channel is created when the occurrence of an event over a period 

of time passes information.32

Covert channels can exist in all types of computing environments, 

from within a partitioned system to a typical embedded system.33 

When strong security is required, an analysis should be performed 

to identify and remove or mitigate covert channels that could be 

used by an attacker.

Key Management Implementations

Coordinating the creation, use, delivery, and updating of 

cryptographic keys is called key management. The complexity of 

key management is based on the number of keys, the number of 

systems that require those keys, and the cryptoperiod of each key.

In the simplest but least secure form of key management, all 

embedded systems use the same key for an infinite amount of 

time (i.e., non-expiring cryptoperiod). This configuration provides 

a level of privacy by using cryptography (with the assumption that 

it is correctly applied), but it has the risk of exposing all embedded 

systems to attack if the key is ever compromised. In contrast, a 

configuration in which each embedded system has its own unique 

key for a short, random cryptoperiod leads to much stronger 

security.

The complexity of ensuring that the many systems in a typical 

embedded environment have the correct cryptographic keys and 

maintain their recommended cryptoperiods demands a central key 

management system that implements the framework specified in 

Barker, Smid, Branstad, and Chokhani, “A Framework for Designing 

Cryptographic Key Management Systems.”34

 

Key Generation

Random numbers are a cornerstone to the effectiveness of 

cryptography. Pseudo-random numbers (PRN) are a starting 

point, but they do not provide the strength of a true (entropic) 

random number (TRN) generator. The issue with PRNs is that 

they are deterministic by definition, as they are generated by 

a mathematical equation. Determinism in cryptographic key 

generation is counterproductive because, if the starting point 

of the PRN (the “seed”) is found, the cryptographic key can be 

determined in a much shorter time frame.

A hardware-based random number generator that provides true 

entropy can be used for the generation of strong cryptographic 

keys. Modern Intel® processors have specific instructions35 

available, and NXP processors have a hardware-based random 

number generator available in their SEC module.36 With this 

hardware support, a platform is available such that cryptographic 

keys can always be created using a TRN generator.37 If hardware 

support is not available, there are software- based alternatives that 

can be used to ensure a quality source of entropy.

Key Distribution

Extreme care is required when distributing cryptographic keys 

to embedded systems. Verification of the destination embedded 

system must be absolute to ensure that the keying material does 

not mistakenly fall into an attacker’s hands. The keying material 

must be kept confidential, from the source to the destination 

embedded system and within the embedded system, until it is 

needed. The embedded system must have absolute verification 

of the source of the key distribution to ensure that an attack is not 

being launched against it. By using an attacker’s keying material, 

the embedded system unknowingly loses the confidentiality of its 

data in motion.

INTEGRITY FOR EMBEDDED SYSTEMS

Integrity implementations are used to ensure that the data of 

the embedded system have not been modified or deleted by 

an attacker. These data include the data being generated or 

consumed by the embedded system, along with its programming 

data (operating system, applications, configuration data, etc.). As 

with confidentiality, integrity applies to the three states in which 

data exist: in motion, at rest, and in process.

Integrity of data is typically verified by a mathematical algorithm 

called a hash. There are many implementations of hash functions, 

but the one selected must minimize, if not completely remove, 

the risk of a collision where more than one input can generate 
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the same output (the message digest). These types of hashes 

are called Secure Hash Algorithms (SHA).38 By minimizing the 

chance that the changed data hashes to the same value as the 

original data, reduction of collision risk increases the probability 

of a change to the data being detected. As shown in Figure 6, the 

categories of integrity for an embedded system are data integrity, 

boot process, and AAA.

Data Integrity Implementations

The data within an embedded system can include the operating 

system, the applications, and the configuration data. If any of 

these data are corrupted, the embedded system will not perform 

its intended function, or the embedded system can become an 

instrument for the attacker to use on the fabric of the embedded 

system itself (also known as a bot). Disruption of the integrity 

of the data on the embedded system is like disruption of the 

foundation of a residence: The components above it are weakened 

and cannot be trusted.

Data-in-Motion Integrity

Many embedded systems have the requirement of passing 

data to/from the device. The data must be protected against 

modification, be it intentional (through an attack) or unintentional 

(through a programming error), while being transmitted from 

source to destination. A hash can be used, but the attacker can 

circumvent this measure by simply recalculating a new message 

digest after the modification has been made. A stronger integrity 

mechanism is a keyed-hash message authentication code 

(HMAC). The HMAC provides a data integrity check with a shared 

private key, as shown in Figure 7. Because the HMAC requires a 

key, it must be protected just like a cryptographic key.

Data-at-Rest Integrity

The integrity of critical data on the embedded system must be 

verified before the data can be relied upon for processing. The 

verification of the programming data will be covered in the “Secure 

Boot” section of this paper. Verification of the configuration and 

site-specific data should be completed prior to operating on that 

data to ensure that no modifications to these data have been 

made by an attacker. Using an HMAC, the message digest of the 

data can be calculated (periodically and before shutdown) and 

verified (at startup and periodically).

Data-in-Process Integrity

As data are being generated or consumed on the embedded 

system, integrity checks can be used to ensure that the processing 

flow can be trusted and that the correct data are being processed. 

Unique enumeration values throughout the software and for all 

data types can be used to verify the processing flow integrity. This 

approach ensures that each application programming interface 

(API) is called with the parameters that are unique to only that API 

and thus maintains the integrity of the processing flow.

Boot Process Implementations

Starting the embedded system with known, authenticated 

software is foundational to securing the embedded system. 

Without a boot process that proves that the embedded system is 

starting with unmodified software and data, the system cannot be 

trusted. The verification must include boot code, application code, 

and critical data that are stored on the system (data at rest).

The boot process is partitioned into two parts, as shown in Figure 

8. The secure boot phase is controlled by the trusted hardware 

platform, and the trusted boot phase is controlled by the previously 

verified software.
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Secure Boot

Secure boot starts with the platform and the pedigree of that 

platform. A trusted platform is hardware that has been purchased 

through approved channels of distribution by the technology 

supplier.39 Upon receipt of the platform, it must be validated that 

the correct item was received, its delivery path is sensible, its 

delivery time is justified, and its tamper-resistant packaging is 

intact. Only then can the platform become a trusted platform.

One of the security features that the trusted platform must provide 

for is a mechanism to verify the boot software of the embedded 

system. This mechanism enables an unchangeable (due to its 

implementation in hardware) process to verify the first piece of 

software in the boot process. The verification process is best 

implemented using digital signatures.

Digital signatures combine the use of a hash function’s message 

digest along with the asymmetric private-key encryption of that 

hash function by the author. The trusted platform verifies that digi- 

tal signature by recalculating the message digest, decrypting the 

associated digital signature with the public key, and comparing the 

message digests. If the message digests match, then the integrity 

of the software is verified. This workflow is shown in Figure 9, and 

it differs from what is shown in Figure 4 because that workflow 

was for confidentiality and this workflow is for integrity.

Trusted Boot

Trusted boot is the progression of a boot process in which 

individual images and data are verified by previously verified 

software. It is best if this process includes hardware assist to 

perform the verification processing, because the immutable 

properties of hardware (whether system-on-chip [SoC] or field 

programmable gate array [FPGA]) mitigate the risk of a malicious 

change causing a breach in verified boot processing. The process 

of one verified image passing control to another verified image is 

called a chain of trust (see Figure 10). The chain-of-trust approach 

ensures that only verified software is loaded into the system.

Remote Attestation

Remote attestation40 is the process of taking “measurements” 

during the secure boot and trusted boot phases of the boot 

sequence and reporting these measurements to a physically 

separate server, as shown in Figure 11. These measurements 

are typically a hash of the components of the boot process 

(boot loader, applications, etc.). The server then compares 

these measurements and determines the trustworthiness of the 

embedded system. The transmission of the measurements is 

secured and must include the identity of the embedded system. 

This identity is most secure if it is a hardware-bound identity, 

such as found in a trusted platform module (TPM). The baseline 

measurements must be made in a trusted environment and by 

trusted individual(s).

Remote attestation is best for an embedded system that is 

“always on” a network connection (rather than one that has limited 

network connectivity), so that a mismatch in the measurements 

can be quickly identified and the response defined in the security 

policy can be enacted.
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Authentication/Authorization/Accounting (AAA) 
Implementations

Security risks increase as the level of exposure of an embedded 

system to the internet increases. Couple exposure to the internet 

with a network configuration that is dynamic, and the embedded 

system requires a layering of defenses to maintain the integrity 

of its knowledge of the other devices it communicates with. 

This layering of integrity defenses is called authentication, 

authorization, and accounting (AAA, pronounced “triple A”). 

AAA provides a level of integrity for the embedded system in 

determining which other devices on its network it is allowed to 

communicate with and the type(s) of data that should be passed.

Due to the nature and complexity of these defenses, a centralized 

server and toolset are required to properly manage the application 

of these defenses in an embedded systems environment and to 

analyze and respond to any received security events.

Authentication

Authentication tries to answer the question “Are you who you say 

you are?” in order to establish trust in the identity of the distant 

device the embedded system is attempting to communicate with 

over the network. To implement authentication, a trusted third 

party is required. This trusted third party mediates between the 

embedded system and the distant device (so both devices must 

be known to the trusted third party) and contains information 

about all devices on the network. A well-established protocol 

called Kerberos41 exists to establish this trust between devices 

over the network. Figure 12 shows the message flow for the 

embedded system, using the Kerberos-identified messages 

along with clarifying annotations, to establish its identity so it can 

communicate with the distant device over the network.

Authentication can also occur within the embedded system with 

its applications and operating system. In this case, the trusted 

third party consists of both the operating system and the security 

policy, which will have a set of identifying attributes unique to each 

application (whether a task, process, or partition). The operating 

system will have access to these immutable identifying attributes 

at runtime. When the application makes a service request to the 

operating system, the request includes these identifying attributes 

(without the awareness of the application). The operating system 

then has assurance of the source of the request prior to providing 

the service.

Authorization

After authentication, authorization typically follows, because the 

embedded system must be known before it is allowed to access 

other network resources. Authorization is the determination of 

the type of access allowed to a resource within the network. A 

network-wide security policy defines what the resources are, the 

paths of communication to and from each resource, and to what 

level the access can occur (read versus read/write).

Just as with authentication, authorization can occur within the 

embedded system as well. The security policy being enforced by 

the robust operating system is used to make the determination 

about whether the application is allowed to request the service. 

This is the second step shown in Figure 14.

Embedded System

Secure Boot Trusted Boot

Measurements

Attestation Server

Measurements + Identity
Trustworthy

?
Baseline

Measurements

Figure 11. Remote attestation workflow
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Figure 14. Authorization of a request provided by a robust operating system

Figure 15. Notional SIEM server usage

Accounting

Accounting is the generation of a log of events that denote 

security-related activities on and by the embedded system. This 

logging of events can occur within the embedded system or to 

an external server. The events to log and the response to those 

events are defined by the security policy.

Because impenetrable defenses are not possible, the ability to 

determine what led to an attack and what happened during the 

attack are critical in the feedback loop for improving the security 

of the embedded system. Security-related event logs must be 

collected and analyzed to ensure the following:

1. The integrity of the embedded system can be monitored.

2. An attack determination can be made.

3. A response to the attack is made.

It is best that these occur as near to real time as possible to 

minimize the damage from the attack. The security policy on the 

embedded system defines the security-related events and the 

initial, frontline responses to those events.

When a large number of embedded systems must be monitored, 

along with a large number of events that need to be parsed and 

managed, a specialized server is required. This type of server 

is called a security information and event management (SIEM) 

server. A SIEM server can correlate received security event 

messages from embedded systems and use predictive analytics 

to determine whether an embedded system is at risk of an attack. 

A SIEM server can also receive a continuous threat intelligence 

feed to aid in its analysis of security events.

A SIEM server is a powerful, but also a very complex, tool. The 

introduction of a SIEM server into an infrastructure must be 

carefully planned, and to be successful its capabilities must be 

allowed to evolve over time, as the administrators become more 

accustomed to what it can provide.

A notional configuration of use of a SIEM server is shown in Figure 

15.

AVAILABILITY FOR EMBEDDED SYSTEMS

Availability implementations are used to ensure that an embedded 

system performs its intended function. The simplest and purest 

approach to ensuring availability for an embedded system is 

to never allow any changes to occur on the embedded system. 

Of course this is unrealistic, because attacks over the internet 

constantly evolve in sophistication, and the functionality of the 

embedded system itself evolves over time. Because of these 

competing goals (availability vs. enhancements), a series of 

implementations is required to reduce the risk of diminishing the 

availability of the embedded system. As shown in Figure 16, the 

categories of availability for an embedded system are allowlisting, 

intrusion protection, management, and countermeasures.

Allowlisting Implementations

Allowlisting simply defines what is allowed. Anything that is not 

on the allowlist is denied. Allowlisting for an embedded system 

can be applied at the network level (what devices the embedded 

system can communicate with) and within the embedded system 

(what applications can be executed within the embedded system). 

The focus in this section will be within the embedded system, on 

what can be layered to maintain the availability of the embedded 

system.

Access Control

Defining which user or application can execute a specific service 

provided by the embedded system provides a level of defense 

against an attack. To correctly determine which user or application 

is associated with an exploitable service of the embedded 

system, the attacker would need an almost a priori knowledge 

of the embedded system. This user/application-to-service 

control is called access control. Access control is the policy that 

defines what a user or application can perform with a service 
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Figure 16. Availability implementations

Table 1. Access Control Types 

Access Control Type Definition Example Overhead Strength

Mandatory access 
control (MAC)

Each service is labeled and 
each user/application is 
labeled. Access is allowed 
only if the labels match.

“Only the maintenance application 
can access the reboot service of 
the embedded system.”

Very high

The labeling between the users/appli-
cations and services must be defined 
and maintained.

Strongest

Clearly defines what user/applica-
tion can access what service.

Role-based access 
control (RBAC)

The access controls are spe-
cific to the role that the user/
application is providing.

“Only the network administrator 
application can update the AAA 
configuration.”

Medium

Once roles and services are defined, it 
becomes more of a maintenance task 
to keep them updated.

Medium-to-high

Based on the granularity of the 
roles defined.

Discretionary access 
control (DAC)

The access controls are 
specific to the user/applica- 
tion and defined by the user/
application.

“The file created by the Sensor 
Application can be read, but not 
written, by the Network Application.”

Very Low

It is up to the application to define the 
access control.

Weakest

Pushes determination to the 
application.

Rule-based access 
control (RBAC)

The access controls are 
based on a set of rules that 
are more than just the user/
application.

“Access to maintenance data is lim-
ited to 2300–2359 each night and 
only when the embedded system is 
at a maintenance facility.”

Medium-to-High 

Depends upon how fluid the rules are 
and if there are exception cases.

Medium

Depends on the stringency of the 
rules.

the embedded system is providing. There are four different types 

of access controls listed in Table 1, which also describes the 

management overhead of implementing the access control and 

the strength of access it provides (assuming the access control 

cannot be bypassed).

File Integrity

Maintaining the integrity of data files that are generated or 

consumed on the embedded system aids its availability by 

preventing corrupt or malicious data onto the device and by not 

allowing a polluted file to pass through the embedded system. 

Depending on the environment in which the embedded system 

operates, how the embedded system is implemented, and the 
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Figure 17. File integrity workflow

regulations with which the embedded system must be compliant, 

the integrity of the files and the list of files on the device must 

be closely monitored. Otherwise, the embedded system can be 

attacked and lose its availability.

Steganography is a form of covert channeling in which data are 

hidden in an unused portion of a file and are only evident to the 

antagonist and the intended recipient. These hidden data can 

include any type of confidential or protected data — even malware.

Borrowing from the integrity principle, a “seal” can be applied on 

the files as close to the source as possible, as soon as the file 

is created, to provide the highest level of assurance that it has 

not been tampered with. It is best if the integrity seal is a digital 

signature, and the source has the closely guarded private key and 

the embedded system has the public key. The integrity seal is 

then verified by the embedded system as part of the boot process 

and before each access (i.e., read, execute, and pass-through as 

needed).

Intrusion Protection Implementations

Intrusion detection systems (IDS) and intrusion prevention 

systems (IPS) are common systems in the topology of a modern 

network. 

• Detect: To discover or identify the presence or existence of
• Prevent: To keep (something) from happening or arising
• Protect: To keep safe from harm or injury

Protection of the embedded system against malicious software 

will be defined as: 

protection := detection + prevention

Intrusion protection is specific to an embedded system, depending 

on both its environment and its functionality. Intrusion protection 

provides a layer of defense within the embedded system to detect 

the presence of, and prevent damage from, malicious software 

executing within the embedded system’s memory space. Intrusion 

can occur through the network or through a separate device 

connected to the embedded system, such as a USB device.

Malicious Software Prevention

Preventing foreign software from executing within the embedded 

system requires a static inventory of what should be on the 

embedded system, along with a known list of APIs that each 

application within the embedded system can access. This 

inventory includes the memory, the file system (if applicable), 

and the critical system APIs that are allowed to be called by each 

application.

The inventory of the file system and memory is protected, verified 

at startup, and periodically verified as the embedded system 

executes. The inventory needs to be defined in such a way that 

a straightforward verification process can occur (to minimize 

performance impacts). It is best if the unused memory within the 

system can be periodically verified to ensure that no malicious 

software has infiltrated the embedded system.

Applications should never be given complete access to all APIs 

available by the operating system. Rather, an enforced subset 

of the APIs that the application absolutely requires to fulfill its 

requirements should be allocated. This is the principle of least 

privilege, which states that an entity should be restricted in access 

to only those resources required to fulfill its function, and no 

more. For example, an application that monitors a sensor does 

not require access to APIs that control the execution model of the 

system. For better security, the enforcement of the APIs should be 

implemented by the OS against a statically defined configuration 

determined at build time.

As shown in Figure 18, protection against malicious software 

requires both the ability to detect and a mechanism to prevent an 

attack from the malicious software.

Operating System

Memory

Allocated
MemoryMemory Map

File System
File System
Inventory

API Policy

Application 1

Application 2

Application n

Unallocated
Memory

Detection

Prevention

Figure 18.  Malicious software protection
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Firewall

A firewall is defined as a system that monitors and controls the 

incoming and outgoing network traffic based on predetermined 

security rules.42 For an embedded system, it is best if firewall rules 

are partitioned into different layers to simplify the management 

of the rules and, more importantly, to distribute the rules across 

multiple applications and files to decrease the amount of damage 

that can be done by an attack. This layering of rules is shown in 

Figure 19, which shows how different applications modify the 

different firewall rules.

It is important that a firewall be able to determine anomalous 

behavior for communications ports. Each port into and out of the 

embedded system should be characterized to determine its data 

rate (either sustained or burst). The firewall should then contain 

rules to monitor the rate of data going through each port. This 

characterization can then be used to help detect an intrusion into 

the embedded system.

Embedded System Management Implementations

When an embedded system is connected to the internet, 

it operates in a dynamic and ever-growing cyberattack43 

environment. A set-and-forget approach will protect the embedded 

system for only a short period of time. Rather, active management 

of the device is required to maintain its availability to perform 

its function. As with AAA, a centralized server and toolset are 

required to provide the level of management of a large number of 

embedded systems.

Device Management

Communication between the embedded system and its 

centralized server must be the most protected and most layered 

communication within the device. Because of the administrative 

commands that drive the embedded system, this communication 

path is the most sought-after by an attacker. Faux commands 

at random intervals should be considered for several reasons. 

It will be difficult for the attacker to understand a pattern of 

communication, to determine whether it is “real” or not, and to 

determine whether it is due to a stimulus applied to the embedded 

system. These faux commands should vary in size from a typical 

“real” command to a patch update, and everything in between.

The embedded system requires different levels of management 

to maintain its availability. Overhead-type activities such as 

provisioning, commissioning, and general remote administration 

are typically required.

The next level of management involves the authentication 

and authorization described in the AAA section of this paper. 

It is mandatory that the embedded system is not allowed 

to communicate with any device outside of its allowlist of 

approved devices, and that accounting entries are received when 

communication is occurring.

The highest level of management is that of security-related 

management. This includes off-loading security event logs, critical 

security events, and security-related patch updates.

Security Policy

The security policy describes what the embedded system needs to 

protect, how to protect it, and the events related to that protection. 

The security policy covers the implementations covered in this 

paper. Examples of items covered by the security policy are listed 

in Table 2. Protection of the security policy on the embedded 

system demands, at minimum, an integrity check to ensure that it 

has not been corrupted. The embedded system will need to have a 

preprogrammed response to a corrupt security policy (destruction 

of nonvolatile files, shutdown, etc.).
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Triad Implementation Security Policy Examples

Confidentiality Privacy Algorithm(s) to use for each path of communication and each data stored

The partitions in the system; information flow between those partitions; the devices accessible by the parti-
tions; the OS APIs allowed to be calledSeparation

The list of crypto keys and their cryptoperiod; how each key is protected and its destruction mechanismKey management

Integrity Data integrity Which integrity mechanisms to use on which data if applicable: the HMAC key and its cryptoperiod

What needs to be verified; what if a verification step fails (degraded mode)

Boot process What communication needs to be authenticated; what is authorized to be accessed on the device; security 
events that are to be logged locally and sent remotelyAAA

Availability Whitelisting What access control method is used; list of resources on the device that require controlled access

Intrusion protection APIs allowed to be executed by the applications; the file system inventory

Management Management server information; communication path implementation; rate and type of faux commands

Countermeasures Response to tamper events and attestation violations

Table 2. Security Policy Examples

Countermeasure Implementations

Availability can be larger than the single embedded system. The 

compromise of one embedded system can lead to a compromise 

of all embedded systems. Because of this, specific defenses are 

required to minimize an attack on the larger group of embedded 

systems.

Hardware Anti-tamper Support

If an attacker has physical access to the embedded system, 

internal components of the device become a priority for the 

attacker, up to and including attaching an external device to the 

embedded system (e.g., a JTAG device). In general, embedded 

systems should be encased and only necessary ports exposed. 

But if an attacker opens the case of the embedded system and 

has access to its components, great damage can occur, not 

only to the device but to the network that the embedded system 

resides on and the devices that it communicates with. A defensive 

layer against physical access to the embedded system can be 

implemented using anti-tamper44 means provided by the trusted 

platform.

The embedded system’s security policy defines what is to be 

protected from a physical attack, but considerations should 

include encrypting applications and configuration data so that 

the cryptographic key(s) is erased when a physical tamper event 

occurs (the sanitization implementation). This approach is outside 

the function of software and is completely implemented by the 

trusted platform. When the system attempts to boot, the software 

will not be able to be decrypted correctly, rendering its contents 

unusable by the attacker. The same applies for the configuration 

data (and other data) on the embedded system. Without the 

cryptographic key, the data on the file system is unreadable by the 

attacker. Although the attacked embedded system is no longer 

available, other embedded systems and the network remain 

available.

Patch Management

A centralized server with a specialized toolset is required to 

manage patches on each embedded system. Because embedded 

systems can reside in a large range of operational environments, 

some devices may require patches that other devices do not. 

These operational environments may also dictate a specific 

security policy that defines responses to certain attacks.

Attestation

Portions of the embedded systems application are typically static 

during its operation. The application itself, its operating system, 

and its configuration data are typically static. These regions of 

the embedded system can be verified during execution with 

assistance from the trusted platform. Following the boot process, 

an integrity calculation can be made over these regions, and 

then subsequent integrity calculations can be made and verified 

against the boot time integrity calculation by the trusted platform 

until the following power cycle. If there is a mismatch with the 

boot time integrity calculation, the security policy will identify 

the response, including a system restart to cause the embedded 

system to go through its boot process.

A change in the static region of the embedded system could 

indicate a programming error, or it could indicate that an attack is 

occurring and attempting to disrupt the operation of the device. 

Using the trusted platform, the performance impacts of this 

implementation can be significantly minimized.
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SUMMARY OF CURRENT RECOMMENDED CRYPTOGRAPHIC ALGORITHMS45

Symmetric algorithms for encryption and decryption
• AES-128
• AES-192
• AES-256

Digital signatures
• DSA: (L, N) = (2048, 224), (2048, 256), or (3072, 256)

 – Note: DSA is not recommended for systems that will be used after the year 2030.
• ECDSA and EdDSA: len(n) ≥ 224

• RSA: len(n) ≥ 2048

Random bit generation
• Hash_DRBG
• HMAC_DRBG

• CTR_DRBG with AES-128, AES-192 and AES-256

Key exchange
• DH and MHQ: ≥ 112 bits of security strength (using specified curves/finite fields)

Key agreement and key transport
• RSA-based: NIST SP 800-56B with len(n) ≥ 2048

Key wrapping and unwrapping
• AES-128, AES-192, or AES-256

Key derivation function
• HMAC using any approved hash function
• CMAC using AES

Hash functions
• SHA-2 family (SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256)

• SHA-3 family (SHA3-224, SHA3-256, SHA3-384, and SHA3-512)

Message authentication codes (MACs)
• HMAC with key lengths ≥ 112 bits
• CMAC with AES
• GMAC with AES
• KMAC with key lengths ≥ 112 bits
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