
Security Implementations for
Embedded Systems

A Survey of Information

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

2 | White Paper

EXECUTIVE SUMMARY

This paper examines security implementations that support the objectives of information

confidentiality, integrity, and availability (the CIA triad1). The focus of this paper is on

security implementations for embedded systems.

The implementations described are widely applicable to embedded systems in a variety

of markets, including aerospace,2 automotive,3 defense,4 industrial,5 medical,6,7 and

networking8 and are directly applicable to the protection of the intellectual property (IP) of

the vendor.

TABLE OF CONTENTS

The CIA Triad . 3
Defense-in-Depth Approach . 3
Confidentiality for Embedded Systems . 3

 Privacy Implementations . 3

 Separation Implementations . 5

 Key Management Implementations . 6
Integrity for Embedded Systems . 6

 Data Integrity Implementations . 7

 Boot Process Implementations . 7

 Authentication/Authorization/Accounting (AAA) Implementations 9
Availability for Embedded Systems . 10

 Allowlisting Implementations . 10

 Intrusion Protection Implementations . 12

 Embedded System Management Implementations . 13

 Countermeasure Implementations . 14
Summary of Current Recommended Cryptographic Algorithms . 15
References . 16

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

3 | White Paper

THE CIA TRIAD

The CIA triad provides foundational security principles for the

protection of an asset. Its three components can be thought of as

similar to the components of security for the contents of a home:

• Confidentiality: Defined as maintaining the privacy of an asset.
Solid doors, walls, and window coverings provide privacy for the
contents of a residence.

• Integrity: Defined as maintaining the content of the asset. An
alarm system, a fence, and locks on the doors and windows
maintain the integrity of a residence, such that the contents of
the residence are kept intact.

• Availability: Defined as the accessibility of the asset. The con-
tents of the residence are available to the residents via pass-
codes to the alarm system and keys to the door locks.

Each CIA triad principle can be further broken down into

categories, which can then be broken down into implementations.

Figure 1 shows the categories for each of the principles. The

remainder of this paper will discuss these categories and how

each can be used to secure an embedded system.

Application of the CIA triad begins with a security assessment.

The security assessment determines which CIA implementations

are required based on vulnerabilities, risks, regulatory

requirements, and IP protection needs. The security assessment

balances those needs against cost, performance, and the

operational environment. The security assessment will provide

the security policy, which defines the security objectives for the

embedded system: what the security-related events are, how they

are to be constrained, when they are to be reported, and what

actions to take in response to the events. The security assessment

also provides processes within the development cycle to assure

that the security-related principles are implemented.

DEFENSE-IN-DEPTH APPROACH

No single security principle by itself can provide complete

protection for an embedded system.9 Layering of defenses

provides strong, multifaceted protection for the embedded

system. The concept of layering these principles together is known

as defense in depth. Many factors dictate the security components

needed to protect an embedded system; a security assessment

will uncover the required components.

CONFIDENTIALITY FOR EMBEDDED SYSTEMS

Confidentiality implementations protect the privacy of data. This

protection is applicable to data passing to/from the embedded

system (data in motion), data that are stored on the embedded

system such as on disk drives and/or in nonvolatile memory (data

at rest), and data that are being processed on the embedded sys-

tem (data in process). Confidentiality can be partitioned into three

categories: privacy, separation, and key management (as shown in

Figure 2, along with their associated implementations).

Protecting the confidentiality of data in an embedded system

can be a regulatory requirement, a method to protect IP, or an

industry-recommended requirement (for example, in aerospace,10

automotive,11 defense,12 industrial,13 medical,14 and networking15).

Privacy Implementations

Privacy is achieved using cryptographic encryption algorithms.

An authorized individual or resource can restore encrypted data

to its original form (decryption). Just as there are different types

of door locks,16 there are different types of encryption algorithms.

Two following types of encryption algorithms can be used for

confidentiality:17

• Symmetric algorithms
 – Stream cipher: Processing data one datum at a time
 – Block cipher: Processing multiple data one group at a time

• Asymmetric (also known as public key) algorithms

Security Assessment

Confidentiality

Development Processes

Trusted Platform

Privacy

Separation

Key
Management

Data Integrity

Boot Process

Authentication
Authorization,
& Accounting

Countermea -
sures

Allowlisting

Intrusion
Protection

Management

Integrity Availability

Security Policy

Confidentiality

Privacy

Data in Motion

Data at Rest

Sanitization

Separation

Partitioning

Covert
Channels

Key
Management

Key Generation

Key
Distribution

Figure 1. CIA triad principles

Figure 2. Confidentiality implementations

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

4 | White Paper

Embedded System #2Embedded System #1

Wind RiverEncryption
(AES-128) (AES-

Shared Key

Plain Text Plain TextCipher Text

Wind River Decryption
(AES-128)

BhT*%Fq.1hp)@\gd

0123456789abcdef0123456789abcdef

Embedded System #1Embedded System #2-n

Wind RiverEncryption (AES-

Plain Text Plain TextCipher Text

kdKSp8*_9(&\||akd^2Wind River Decryption

Public Key

Private Key

Figure 3. Symmetric cryptographic workflow

Figure 4. Asymmetric cryptographic workflow

The strength of the privacy provided is based on the combination

of the algorithm and the length of the associated key.18 Industry-

approved encryption algorithms and key lengths are provided in

Barker, “Transitions: Recommendation for Transitioning the Use of

Cryptographic Algorithms and Key Lengths.”19

The length of time in which a cryptographic key should be used is

called a cryptoperiod. Cryptoperiods vary based on the algorithm,

key length, usage environment, and volume of data that is being

protected. Guidance for cryptoperiods can be found in Barker,

“Recommendation for Key Management — Part 1: General

(Revision 4).”20

Symmetric cryptographic algorithms use the same key for

both encryption and decryption processing. An example of a

symmetric algorithm is the Advanced Encryption Standard

(AES).21 AES is an industry-approved symmetric algorithm22 for

providing confidentiality of sensitive data. Figure 3 shows a typical

symmetric cryptographic workflow. In the embedded arena,

sharing a cryptographic key can be challenging because of the

large number of end points involved. This challenge is addressed

in the “Key Management Implementations” section of this paper.

Asymmetric data encryption algorithms are also called public

key algorithms. This type of algorithm requires two keys (a key

pair): one that is kept private and one that can be made public.

The private key is kept tightly protected and is accessible by as

few individuals as possible. The public key can be accessible

by others but does require a level of protection in an embedded

environment, as its corruption could cause a denial-of-service

(DoS) attack. The asymmetric algorithm provides for encryption

using the public key and decryption using the private key. Figure 4

presents an asymmetric cryptographic workflow.

Asymmetric cryptography requires more processing power and

longer-length keys to achieve a level of security comparable

to symmetric cryptography. For this reason, asymmetric

cryptography is typically used for the generation and verification

of digital signatures. This use will be discussed in the “Integrity for

Embedded Systems” section of this paper.

Data in an embedded system can be in one of three states: in

motion, at rest, or in process. Data in motion is data passing to/

from the embedded system, data in process is data generated or

consumed within an embedded system, and data at rest is data

stored on the embedded system.

Data-in-Motion Privacy

Data passed over the network can be more than just data

generated or consumed by an embedded system. Protection of

management data transferred to and from the embedded system

is just as critical. Updates, patches, telemetry, configuration data,

and logging information can be of significant value to an attacker,

so protection of management data is paramount to securing the

embedded system. An attacker will monitor the behavior of the

embedded system when stimuli are applied during attacks; by

observing the response from the system, the attacker can plan

the next step in the attack process.

Many implementations for protecting the confidentiality of data

in motion are available. These implementations can operate

at different levels of the network stack — for example, Internet

Protocol Security (IPsec),23 Transport Layer Security (TLS),24 and

HyperText Transfer Protocol Secure (HTTPS)25 — and these just

scratch the surface, as shown in Figure 5. Recommendations

for securing data in motion are provided in McKay and Cooper,

“Guidelines for the Selection, Configuration, and Use of Transport

Layer Security (TLS) Implementations,”26 using the TLS protocol.

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

5 | White Paper

Data-at-Rest Privacy

Protection of data stored on an embedded system, whether on

a disk drive, a USB stick, or in nonvolatile RAM, can include the

data produced or consumed by the embedded system, patches,

updates, telemetry data, and logging information. These data can

be very valuable to attackers if stolen and, if corrupted, can also

disrupt the operation of the embedded system, causing a DoS

attack.28

Protection of data at rest is typically implemented by the use of

symmetric cryptography. Symmetric cryptographic algorithms

such as AES are ideally suited for protecting data at rest, as

they are fast and can accomplish strong levels of protection

using shorter key lengths than asymmetric cryptography. The

symmetric key, however, must be tightly protected on the device to

maintain the privacy of the data. Secure storage of the symmetric

key is best accomplished using hardware assistance, such as

the Trusted Platform Module29 or the Secure Key Management

Module of an NXP (formerly Freescale) QorIQ processor.30 If

hardware assistance is not available for key storage, a software

implementation that utilizes obfuscation to achieve its protection

can then be used.

The usage environment of the embedded system may have an

impact on the generation of the key. For example, if the data need

to be recovered and the embedded system becomes inoperable,

the ability to have a duplicate key is then required. Conversely, if

the data are isolated to the embedded system and do not need

to be recovered, the key can be randomly generated and stored

solely on the embedded system in a hardware-assisted protected

mechanism.

Sanitization

When critical data are no longer needed on the embedded system,

they should be sanitized to prevent loss of privacy. To minimize

the potential attack surface, the data’s memory locations should

be overwritten, including the stack. The simplest method of

keeping the stack sanitized is to initialize all local variables within

a function when the variables are defined. As the functions are

executed, the stack is auto-sanitized as a result.

Because the use of cryptographic algorithms inherently requires

the generation and use of a cryptographic key, the means to

destroy or erase this key and associated data are required. By

encrypting all data at rest on the embedded system, sanitization

can be completed by the destruction of the cryptographic key(s)

used to protect that data. Once the key is destroyed, the data

cannot be restored and will remain nonsensical. This approach

is called cryptographic erase.31 Destruction of the cryptographic

key(s) is based on the hardware device, if hardware is used. If not,

a series of overwrites of alternating data patterns over the key

storage area can be used.

Separation Implementations

The architecture of the embedded system provides a level of

confidentiality by keeping independent functions isolated from

each other. For example, the function that provides connectivity to

the internet can be kept separate from the function that accesses

the sensors the embedded system is managing, with strictly

limited information flows between the two. This constrains an

attack on the internet connectivity function from impacting the

sensor management function.

Partitioning (Data in Process)

Isolating processes on the system provides a level of

confidentiality by assuring that each process cannot access

or interfere with other processes. A typical implementation of

separation uses a Type 1 hypervisor that resides directly above

the processor. The hypervisor defines partitions by assigning

resources (memory, devices, cores, etc.) to each partition and

executes the process(es) within each partition. The processes can

execute within the defined partition and maintain the privacy of its

data from other processes on the processor.

Communication channels between partitions can be provided by

the hypervisor to include shared memory regions or an inter-

partition communication mechanism. These communication

channels can be restricted in terms of direction of flow, access

rights, and whether or not the hypervisor itself is involved in the

communication flow.

The assignment of resources and definition of the communication

channels is defined in the hypervisor’s security policy.

SSH, S/MIME, PGP, X.509, IKE, ISAKMP

SOCKS (circuit level gateway)

SSL, TLS, Stunnel

IPsec

CHAP, PPTP, L2F, WEP, WPA2. ECP, EAP

Application

Presentation

Session

Transport

Network

Data Link

Physical

CHAP: Challenge Authentification Protocol
PPTP: Point to Point Tunneling Protocol
L2F: Layer 2 Framing Protocol
L2TP: Layer 2 Tunneling Protocol
WEP: Wired Equilvalent Privacy
ECP: Encryption Control Protocol
EAP: Extensible Authentification Protocol
WPA2: Wireless Protected Access

IPsec: IP Securiy
SSL: Secure Socket Layer
TLS: Transport Layer Security
Stunnel: Secure Tunnel
SSH: Secure Shell
S/MIME: Secure MIME
PGP: Pretty Good Privacy
ISAKMP: Intermet Sec. Assoc. and Key Mgt. Prot.

IKE: Internet Exchange

VPN Protocols

Link Layer Security

Figure 5. Security protocols and network layers27

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

6 | White Paper

The security policy creates the time and space allocation for

each partition, along with the channels of communication, if any.

This communication policy can be as high level as “yes” or “no” or

granular enough to constrain the size of the message, the data

rate, and the direction of the communication path.

Covert Channels

Care must be taken in the implementation and usage of

communication channels. An unintended path of communication

could be created, exposing critical data to an attacker. These

unintended communication paths are called covert channels and

come in two forms: covert storage channels and covert timing

channels. A covert storage channel is created when data are

passed against the intent of the security policy. An example of

this is using the IP packet header to transmit data: A covert timing

channel is created when the occurrence of an event over a period

of time passes information.32

Covert channels can exist in all types of computing environments,

from within a partitioned system to a typical embedded system.33

When strong security is required, an analysis should be performed

to identify and remove or mitigate covert channels that could be

used by an attacker.

Key Management Implementations

Coordinating the creation, use, delivery, and updating of

cryptographic keys is called key management. The complexity of

key management is based on the number of keys, the number of

systems that require those keys, and the cryptoperiod of each key.

In the simplest but least secure form of key management, all

embedded systems use the same key for an infinite amount of

time (i.e., non-expiring cryptoperiod). This configuration provides

a level of privacy by using cryptography (with the assumption that

it is correctly applied), but it has the risk of exposing all embedded

systems to attack if the key is ever compromised. In contrast, a

configuration in which each embedded system has its own unique

key for a short, random cryptoperiod leads to much stronger

security.

The complexity of ensuring that the many systems in a typical

embedded environment have the correct cryptographic keys and

maintain their recommended cryptoperiods demands a central key

management system that implements the framework specified in

Barker, Smid, Branstad, and Chokhani, “A Framework for Designing

Cryptographic Key Management Systems.”34

Key Generation

Random numbers are a cornerstone to the effectiveness of

cryptography. Pseudo-random numbers (PRN) are a starting

point, but they do not provide the strength of a true (entropic)

random number (TRN) generator. The issue with PRNs is that

they are deterministic by definition, as they are generated by

a mathematical equation. Determinism in cryptographic key

generation is counterproductive because, if the starting point

of the PRN (the “seed”) is found, the cryptographic key can be

determined in a much shorter time frame.

A hardware-based random number generator that provides true

entropy can be used for the generation of strong cryptographic

keys. Modern Intel® processors have specific instructions35

available, and NXP processors have a hardware-based random

number generator available in their SEC module.36 With this

hardware support, a platform is available such that cryptographic

keys can always be created using a TRN generator.37 If hardware

support is not available, there are software- based alternatives that

can be used to ensure a quality source of entropy.

Key Distribution

Extreme care is required when distributing cryptographic keys

to embedded systems. Verification of the destination embedded

system must be absolute to ensure that the keying material does

not mistakenly fall into an attacker’s hands. The keying material

must be kept confidential, from the source to the destination

embedded system and within the embedded system, until it is

needed. The embedded system must have absolute verification

of the source of the key distribution to ensure that an attack is not

being launched against it. By using an attacker’s keying material,

the embedded system unknowingly loses the confidentiality of its

data in motion.

INTEGRITY FOR EMBEDDED SYSTEMS

Integrity implementations are used to ensure that the data of

the embedded system have not been modified or deleted by

an attacker. These data include the data being generated or

consumed by the embedded system, along with its programming

data (operating system, applications, configuration data, etc.). As

with confidentiality, integrity applies to the three states in which

data exist: in motion, at rest, and in process.

Integrity of data is typically verified by a mathematical algorithm

called a hash. There are many implementations of hash functions,

but the one selected must minimize, if not completely remove,

the risk of a collision where more than one input can generate

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

7 | White Paper

Integrity

Data Integrity

Data in Motion

Data at Rest

Data in Process

Boot Process

Secure Boot

Trusted Boot

Remote
Attestation

AAA

Authentication

Authorization

Accounting

Embedded System #2Embedded System #1

Message
Data

Secure Hash
Function

Secure Hash
Function

Message
Data

HMAC

Message
Data

Generates Verifies

Figure 6. Integrity implementations

Figure 7. HMAC workflow

the same output (the message digest). These types of hashes

are called Secure Hash Algorithms (SHA).38 By minimizing the

chance that the changed data hashes to the same value as the

original data, reduction of collision risk increases the probability

of a change to the data being detected. As shown in Figure 6, the

categories of integrity for an embedded system are data integrity,

boot process, and AAA.

Data Integrity Implementations

The data within an embedded system can include the operating

system, the applications, and the configuration data. If any of

these data are corrupted, the embedded system will not perform

its intended function, or the embedded system can become an

instrument for the attacker to use on the fabric of the embedded

system itself (also known as a bot). Disruption of the integrity

of the data on the embedded system is like disruption of the

foundation of a residence: The components above it are weakened

and cannot be trusted.

Data-in-Motion Integrity

Many embedded systems have the requirement of passing

data to/from the device. The data must be protected against

modification, be it intentional (through an attack) or unintentional

(through a programming error), while being transmitted from

source to destination. A hash can be used, but the attacker can

circumvent this measure by simply recalculating a new message

digest after the modification has been made. A stronger integrity

mechanism is a keyed-hash message authentication code

(HMAC). The HMAC provides a data integrity check with a shared

private key, as shown in Figure 7. Because the HMAC requires a

key, it must be protected just like a cryptographic key.

Data-at-Rest Integrity

The integrity of critical data on the embedded system must be

verified before the data can be relied upon for processing. The

verification of the programming data will be covered in the “Secure

Boot” section of this paper. Verification of the configuration and

site-specific data should be completed prior to operating on that

data to ensure that no modifications to these data have been

made by an attacker. Using an HMAC, the message digest of the

data can be calculated (periodically and before shutdown) and

verified (at startup and periodically).

Data-in-Process Integrity

As data are being generated or consumed on the embedded

system, integrity checks can be used to ensure that the processing

flow can be trusted and that the correct data are being processed.

Unique enumeration values throughout the software and for all

data types can be used to verify the processing flow integrity. This

approach ensures that each application programming interface

(API) is called with the parameters that are unique to only that API

and thus maintains the integrity of the processing flow.

Boot Process Implementations

Starting the embedded system with known, authenticated

software is foundational to securing the embedded system.

Without a boot process that proves that the embedded system is

starting with unmodified software and data, the system cannot be

trusted. The verification must include boot code, application code,

and critical data that are stored on the system (data at rest).

The boot process is partitioned into two parts, as shown in Figure

8. The secure boot phase is controlled by the trusted hardware

platform, and the trusted boot phase is controlled by the previously

verified software.

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

8 | White Paper

Execution Flow

Hardware-
Controlled
Verification

Software-Driven + Hardware-Assisted Verification

Secure Boot Trusted Boot

Trusted Platform

Execution Flow

Hardware-Controlled
Verification

Software-Driven + Hardware-Assisted Verification

Secure Boot

Image #1
(signed/encrypted)

Image #2
(signed/encrypted)

Image #3
(signed/encrypted)

Trusted Boot

Boot Loader
(signed)

Embedded SystemAuthor

Image

SHA

Private Key

Public Key

Message
Digest

Encrypt

Digital
Signature

Image

SHA

Message
Digest

Digital
Signature

Decrypt

Message
Digest

If the message digests are the same,
the digital signature over the image is valid
and states that the image has not been
modified.

Figure 8. Boot process

Figure 10. Chain of trust

Figure 9. Digital signature workflow

Secure Boot

Secure boot starts with the platform and the pedigree of that

platform. A trusted platform is hardware that has been purchased

through approved channels of distribution by the technology

supplier.39 Upon receipt of the platform, it must be validated that

the correct item was received, its delivery path is sensible, its

delivery time is justified, and its tamper-resistant packaging is

intact. Only then can the platform become a trusted platform.

One of the security features that the trusted platform must provide

for is a mechanism to verify the boot software of the embedded

system. This mechanism enables an unchangeable (due to its

implementation in hardware) process to verify the first piece of

software in the boot process. The verification process is best

implemented using digital signatures.

Digital signatures combine the use of a hash function’s message

digest along with the asymmetric private-key encryption of that

hash function by the author. The trusted platform verifies that digi-

tal signature by recalculating the message digest, decrypting the

associated digital signature with the public key, and comparing the

message digests. If the message digests match, then the integrity

of the software is verified. This workflow is shown in Figure 9, and

it differs from what is shown in Figure 4 because that workflow

was for confidentiality and this workflow is for integrity.

Trusted Boot

Trusted boot is the progression of a boot process in which

individual images and data are verified by previously verified

software. It is best if this process includes hardware assist to

perform the verification processing, because the immutable

properties of hardware (whether system-on-chip [SoC] or field

programmable gate array [FPGA]) mitigate the risk of a malicious

change causing a breach in verified boot processing. The process

of one verified image passing control to another verified image is

called a chain of trust (see Figure 10). The chain-of-trust approach

ensures that only verified software is loaded into the system.

Remote Attestation

Remote attestation40 is the process of taking “measurements”

during the secure boot and trusted boot phases of the boot

sequence and reporting these measurements to a physically

separate server, as shown in Figure 11. These measurements

are typically a hash of the components of the boot process

(boot loader, applications, etc.). The server then compares

these measurements and determines the trustworthiness of the

embedded system. The transmission of the measurements is

secured and must include the identity of the embedded system.

This identity is most secure if it is a hardware-bound identity,

such as found in a trusted platform module (TPM). The baseline

measurements must be made in a trusted environment and by

trusted individual(s).

Remote attestation is best for an embedded system that is

“always on” a network connection (rather than one that has limited

network connectivity), so that a mismatch in the measurements

can be quickly identified and the response defined in the security

policy can be enacted.

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

9 | White Paper

Trusted Platform

App 1) App ID
2) Service request

1)OS verifies that the
App ID is defined in
the Security Policy Security

PolicyOperating System

Distant DeviceEmbedded System Trusted Third
Party

Authentication Service Request

Authentication Service Response

Ticket Granting Service Request

Ticket Granting Service Response

Authentication Protocol Request

Authentication Protocol Response

I am "Embedded System."

Here is an encrypted
packet. Show me
you can decrypt it.

Here is the decrypted
packet. Now do you
believe me?

Yes.
Here is the key to encrypt
the next message for the
“Distant Device.”

“They” said we can talk.
Here are my credentials.

Those credentials check
out. Let’s talk….

Figure 13. Authentication provided by a robust operating system

Figure 12. Annotated Kerberos message flow

Authentication/Authorization/Accounting (AAA)
Implementations

Security risks increase as the level of exposure of an embedded

system to the internet increases. Couple exposure to the internet

with a network configuration that is dynamic, and the embedded

system requires a layering of defenses to maintain the integrity

of its knowledge of the other devices it communicates with.

This layering of integrity defenses is called authentication,

authorization, and accounting (AAA, pronounced “triple A”).

AAA provides a level of integrity for the embedded system in

determining which other devices on its network it is allowed to

communicate with and the type(s) of data that should be passed.

Due to the nature and complexity of these defenses, a centralized

server and toolset are required to properly manage the application

of these defenses in an embedded systems environment and to

analyze and respond to any received security events.

Authentication

Authentication tries to answer the question “Are you who you say

you are?” in order to establish trust in the identity of the distant

device the embedded system is attempting to communicate with

over the network. To implement authentication, a trusted third

party is required. This trusted third party mediates between the

embedded system and the distant device (so both devices must

be known to the trusted third party) and contains information

about all devices on the network. A well-established protocol

called Kerberos41 exists to establish this trust between devices

over the network. Figure 12 shows the message flow for the

embedded system, using the Kerberos-identified messages

along with clarifying annotations, to establish its identity so it can

communicate with the distant device over the network.

Authentication can also occur within the embedded system with

its applications and operating system. In this case, the trusted

third party consists of both the operating system and the security

policy, which will have a set of identifying attributes unique to each

application (whether a task, process, or partition). The operating

system will have access to these immutable identifying attributes

at runtime. When the application makes a service request to the

operating system, the request includes these identifying attributes

(without the awareness of the application). The operating system

then has assurance of the source of the request prior to providing

the service.

Authorization

After authentication, authorization typically follows, because the

embedded system must be known before it is allowed to access

other network resources. Authorization is the determination of

the type of access allowed to a resource within the network. A

network-wide security policy defines what the resources are, the

paths of communication to and from each resource, and to what

level the access can occur (read versus read/write).

Just as with authentication, authorization can occur within the

embedded system as well. The security policy being enforced by

the robust operating system is used to make the determination

about whether the application is allowed to request the service.

This is the second step shown in Figure 14.

Embedded System

Secure Boot Trusted Boot

Measurements

Attestation Server

Measurements + Identity
Trustworthy

?
Baseline

Measurements

Figure 11. Remote attestation workflow

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

10 | White Paper

Trusted Platform

App 1) App ID
2) Service request

1)1) OS verifies that the App ID is
defined in the Security Policy
2) OS verifies that the
authenticated requester can
request the service

Security
PolicyOperating System

SIEM

Embedded
System

Internet

Embedded
System

Embedded
System

Constant Global
Threat Intelligence Feed

Figure 14. Authorization of a request provided by a robust operating system

Figure 15. Notional SIEM server usage

Accounting

Accounting is the generation of a log of events that denote

security-related activities on and by the embedded system. This

logging of events can occur within the embedded system or to

an external server. The events to log and the response to those

events are defined by the security policy.

Because impenetrable defenses are not possible, the ability to

determine what led to an attack and what happened during the

attack are critical in the feedback loop for improving the security

of the embedded system. Security-related event logs must be

collected and analyzed to ensure the following:

1. The integrity of the embedded system can be monitored.

2. An attack determination can be made.

3. A response to the attack is made.

It is best that these occur as near to real time as possible to

minimize the damage from the attack. The security policy on the

embedded system defines the security-related events and the

initial, frontline responses to those events.

When a large number of embedded systems must be monitored,

along with a large number of events that need to be parsed and

managed, a specialized server is required. This type of server

is called a security information and event management (SIEM)

server. A SIEM server can correlate received security event

messages from embedded systems and use predictive analytics

to determine whether an embedded system is at risk of an attack.

A SIEM server can also receive a continuous threat intelligence

feed to aid in its analysis of security events.

A SIEM server is a powerful, but also a very complex, tool. The

introduction of a SIEM server into an infrastructure must be

carefully planned, and to be successful its capabilities must be

allowed to evolve over time, as the administrators become more

accustomed to what it can provide.

A notional configuration of use of a SIEM server is shown in Figure

15.

AVAILABILITY FOR EMBEDDED SYSTEMS

Availability implementations are used to ensure that an embedded

system performs its intended function. The simplest and purest

approach to ensuring availability for an embedded system is

to never allow any changes to occur on the embedded system.

Of course this is unrealistic, because attacks over the internet

constantly evolve in sophistication, and the functionality of the

embedded system itself evolves over time. Because of these

competing goals (availability vs. enhancements), a series of

implementations is required to reduce the risk of diminishing the

availability of the embedded system. As shown in Figure 16, the

categories of availability for an embedded system are allowlisting,

intrusion protection, management, and countermeasures.

Allowlisting Implementations

Allowlisting simply defines what is allowed. Anything that is not

on the allowlist is denied. Allowlisting for an embedded system

can be applied at the network level (what devices the embedded

system can communicate with) and within the embedded system

(what applications can be executed within the embedded system).

The focus in this section will be within the embedded system, on

what can be layered to maintain the availability of the embedded

system.

Access Control

Defining which user or application can execute a specific service

provided by the embedded system provides a level of defense

against an attack. To correctly determine which user or application

is associated with an exploitable service of the embedded

system, the attacker would need an almost a priori knowledge

of the embedded system. This user/application-to-service

control is called access control. Access control is the policy that

defines what a user or application can perform with a service

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

11 | White Paper

Availability
Implementations

Whitelisting

Access Control

File Integrity

Intrusion
Protection

Malicious
Software
Prevention

Firewall

Management

Device
Management

Security
Policy

Countermeasures

Hardware Anti-
tamper Support

Patch
Management

Attestation

Figure 16. Availability implementations

Table 1. Access Control Types

Access Control Type Definition Example Overhead Strength

Mandatory access
control (MAC)

Each service is labeled and
each user/application is
labeled. Access is allowed
only if the labels match.

“Only the maintenance application
can access the reboot service of
the embedded system.”

Very high

The labeling between the users/appli-
cations and services must be defined
and maintained.

Strongest

Clearly defines what user/applica-
tion can access what service.

Role-based access
control (RBAC)

The access controls are spe-
cific to the role that the user/
application is providing.

“Only the network administrator
application can update the AAA
configuration.”

Medium

Once roles and services are defined, it
becomes more of a maintenance task
to keep them updated.

Medium-to-high

Based on the granularity of the
roles defined.

Discretionary access
control (DAC)

The access controls are
specific to the user/applica-
tion and defined by the user/
application.

“The file created by the Sensor
Application can be read, but not
written, by the Network Application.”

Very Low

It is up to the application to define the
access control.

Weakest

Pushes determination to the
application.

Rule-based access
control (RBAC)

The access controls are
based on a set of rules that
are more than just the user/
application.

“Access to maintenance data is lim-
ited to 2300–2359 each night and
only when the embedded system is
at a maintenance facility.”

Medium-to-High

Depends upon how fluid the rules are
and if there are exception cases.

Medium

Depends on the stringency of the
rules.

the embedded system is providing. There are four different types

of access controls listed in Table 1, which also describes the

management overhead of implementing the access control and

the strength of access it provides (assuming the access control

cannot be bypassed).

File Integrity

Maintaining the integrity of data files that are generated or

consumed on the embedded system aids its availability by

preventing corrupt or malicious data onto the device and by not

allowing a polluted file to pass through the embedded system.

Depending on the environment in which the embedded system

operates, how the embedded system is implemented, and the

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

12 | White Paper

Embedded SystemAuthor

File
Created

Private Key

Public KeyDigital
Signature

File
Accessed

Digital
Signature

Immediately

Figure 17. File integrity workflow

regulations with which the embedded system must be compliant,

the integrity of the files and the list of files on the device must

be closely monitored. Otherwise, the embedded system can be

attacked and lose its availability.

Steganography is a form of covert channeling in which data are

hidden in an unused portion of a file and are only evident to the

antagonist and the intended recipient. These hidden data can

include any type of confidential or protected data — even malware.

Borrowing from the integrity principle, a “seal” can be applied on

the files as close to the source as possible, as soon as the file

is created, to provide the highest level of assurance that it has

not been tampered with. It is best if the integrity seal is a digital

signature, and the source has the closely guarded private key and

the embedded system has the public key. The integrity seal is

then verified by the embedded system as part of the boot process

and before each access (i.e., read, execute, and pass-through as

needed).

Intrusion Protection Implementations

Intrusion detection systems (IDS) and intrusion prevention

systems (IPS) are common systems in the topology of a modern

network.

• Detect: To discover or identify the presence or existence of
• Prevent: To keep (something) from happening or arising
• Protect: To keep safe from harm or injury

Protection of the embedded system against malicious software

will be defined as:

protection := detection + prevention

Intrusion protection is specific to an embedded system, depending

on both its environment and its functionality. Intrusion protection

provides a layer of defense within the embedded system to detect

the presence of, and prevent damage from, malicious software

executing within the embedded system’s memory space. Intrusion

can occur through the network or through a separate device

connected to the embedded system, such as a USB device.

Malicious Software Prevention

Preventing foreign software from executing within the embedded

system requires a static inventory of what should be on the

embedded system, along with a known list of APIs that each

application within the embedded system can access. This

inventory includes the memory, the file system (if applicable),

and the critical system APIs that are allowed to be called by each

application.

The inventory of the file system and memory is protected, verified

at startup, and periodically verified as the embedded system

executes. The inventory needs to be defined in such a way that

a straightforward verification process can occur (to minimize

performance impacts). It is best if the unused memory within the

system can be periodically verified to ensure that no malicious

software has infiltrated the embedded system.

Applications should never be given complete access to all APIs

available by the operating system. Rather, an enforced subset

of the APIs that the application absolutely requires to fulfill its

requirements should be allocated. This is the principle of least

privilege, which states that an entity should be restricted in access

to only those resources required to fulfill its function, and no

more. For example, an application that monitors a sensor does

not require access to APIs that control the execution model of the

system. For better security, the enforcement of the APIs should be

implemented by the OS against a statically defined configuration

determined at build time.

As shown in Figure 18, protection against malicious software

requires both the ability to detect and a mechanism to prevent an

attack from the malicious software.

Operating System

Memory

Allocated
MemoryMemory Map

File System
File System
Inventory

API Policy

Application 1

Application 2

Application n

Unallocated
Memory

Detection

Prevention

Figure 18. Malicious software protection

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

13 | White Paper

Administration
Application

Network Management
Application

Operational
Application

Admin Server(s)

Network
Management

Other
Embedded Systems

Rules to allow communication
to management server(s)

Rules to block attacks (e.g., scans,
floods, malformed packets, etc.)

Rules to allow communication
to other embedded systems
Rules for data rate monitoring

Figure 19. Firewall rule layering (conceptual)

Firewall

A firewall is defined as a system that monitors and controls the

incoming and outgoing network traffic based on predetermined

security rules.42 For an embedded system, it is best if firewall rules

are partitioned into different layers to simplify the management

of the rules and, more importantly, to distribute the rules across

multiple applications and files to decrease the amount of damage

that can be done by an attack. This layering of rules is shown in

Figure 19, which shows how different applications modify the

different firewall rules.

It is important that a firewall be able to determine anomalous

behavior for communications ports. Each port into and out of the

embedded system should be characterized to determine its data

rate (either sustained or burst). The firewall should then contain

rules to monitor the rate of data going through each port. This

characterization can then be used to help detect an intrusion into

the embedded system.

Embedded System Management Implementations

When an embedded system is connected to the internet,

it operates in a dynamic and ever-growing cyberattack43

environment. A set-and-forget approach will protect the embedded

system for only a short period of time. Rather, active management

of the device is required to maintain its availability to perform

its function. As with AAA, a centralized server and toolset are

required to provide the level of management of a large number of

embedded systems.

Device Management

Communication between the embedded system and its

centralized server must be the most protected and most layered

communication within the device. Because of the administrative

commands that drive the embedded system, this communication

path is the most sought-after by an attacker. Faux commands

at random intervals should be considered for several reasons.

It will be difficult for the attacker to understand a pattern of

communication, to determine whether it is “real” or not, and to

determine whether it is due to a stimulus applied to the embedded

system. These faux commands should vary in size from a typical

“real” command to a patch update, and everything in between.

The embedded system requires different levels of management

to maintain its availability. Overhead-type activities such as

provisioning, commissioning, and general remote administration

are typically required.

The next level of management involves the authentication

and authorization described in the AAA section of this paper.

It is mandatory that the embedded system is not allowed

to communicate with any device outside of its allowlist of

approved devices, and that accounting entries are received when

communication is occurring.

The highest level of management is that of security-related

management. This includes off-loading security event logs, critical

security events, and security-related patch updates.

Security Policy

The security policy describes what the embedded system needs to

protect, how to protect it, and the events related to that protection.

The security policy covers the implementations covered in this

paper. Examples of items covered by the security policy are listed

in Table 2. Protection of the security policy on the embedded

system demands, at minimum, an integrity check to ensure that it

has not been corrupted. The embedded system will need to have a

preprogrammed response to a corrupt security policy (destruction

of nonvolatile files, shutdown, etc.).

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

14 | White Paper

Triad Implementation Security Policy Examples

Confidentiality Privacy Algorithm(s) to use for each path of communication and each data stored

The partitions in the system; information flow between those partitions; the devices accessible by the parti-
tions; the OS APIs allowed to be calledSeparation

The list of crypto keys and their cryptoperiod; how each key is protected and its destruction mechanismKey management

Integrity Data integrity Which integrity mechanisms to use on which data if applicable: the HMAC key and its cryptoperiod

What needs to be verified; what if a verification step fails (degraded mode)

Boot process What communication needs to be authenticated; what is authorized to be accessed on the device; security
events that are to be logged locally and sent remotelyAAA

Availability Whitelisting What access control method is used; list of resources on the device that require controlled access

Intrusion protection APIs allowed to be executed by the applications; the file system inventory

Management Management server information; communication path implementation; rate and type of faux commands

Countermeasures Response to tamper events and attestation violations

Table 2. Security Policy Examples

Countermeasure Implementations

Availability can be larger than the single embedded system. The

compromise of one embedded system can lead to a compromise

of all embedded systems. Because of this, specific defenses are

required to minimize an attack on the larger group of embedded

systems.

Hardware Anti-tamper Support

If an attacker has physical access to the embedded system,

internal components of the device become a priority for the

attacker, up to and including attaching an external device to the

embedded system (e.g., a JTAG device). In general, embedded

systems should be encased and only necessary ports exposed.

But if an attacker opens the case of the embedded system and

has access to its components, great damage can occur, not

only to the device but to the network that the embedded system

resides on and the devices that it communicates with. A defensive

layer against physical access to the embedded system can be

implemented using anti-tamper44 means provided by the trusted

platform.

The embedded system’s security policy defines what is to be

protected from a physical attack, but considerations should

include encrypting applications and configuration data so that

the cryptographic key(s) is erased when a physical tamper event

occurs (the sanitization implementation). This approach is outside

the function of software and is completely implemented by the

trusted platform. When the system attempts to boot, the software

will not be able to be decrypted correctly, rendering its contents

unusable by the attacker. The same applies for the configuration

data (and other data) on the embedded system. Without the

cryptographic key, the data on the file system is unreadable by the

attacker. Although the attacked embedded system is no longer

available, other embedded systems and the network remain

available.

Patch Management

A centralized server with a specialized toolset is required to

manage patches on each embedded system. Because embedded

systems can reside in a large range of operational environments,

some devices may require patches that other devices do not.

These operational environments may also dictate a specific

security policy that defines responses to certain attacks.

Attestation

Portions of the embedded systems application are typically static

during its operation. The application itself, its operating system,

and its configuration data are typically static. These regions of

the embedded system can be verified during execution with

assistance from the trusted platform. Following the boot process,

an integrity calculation can be made over these regions, and

then subsequent integrity calculations can be made and verified

against the boot time integrity calculation by the trusted platform

until the following power cycle. If there is a mismatch with the

boot time integrity calculation, the security policy will identify

the response, including a system restart to cause the embedded

system to go through its boot process.

A change in the static region of the embedded system could

indicate a programming error, or it could indicate that an attack is

occurring and attempting to disrupt the operation of the device.

Using the trusted platform, the performance impacts of this

implementation can be significantly minimized.

A SURVEY OF INFORMATION SECURITY IMPLEMENTATIONS FOR EMBEDDED SYSTEMS

15 | White Paper

SUMMARY OF CURRENT RECOMMENDED CRYPTOGRAPHIC ALGORITHMS45

Symmetric algorithms for encryption and decryption
• AES-128
• AES-192
• AES-256

Digital signatures
• DSA: (L, N) = (2048, 224), (2048, 256), or (3072, 256)

 – Note: DSA is not recommended for systems that will be used after the year 2030.
• ECDSA and EdDSA: len(n) ≥ 224

• RSA: len(n) ≥ 2048

Random bit generation
• Hash_DRBG
• HMAC_DRBG

• CTR_DRBG with AES-128, AES-192 and AES-256

Key exchange
• DH and MHQ: ≥ 112 bits of security strength (using specified curves/finite fields)

Key agreement and key transport
• RSA-based: NIST SP 800-56B with len(n) ≥ 2048

Key wrapping and unwrapping
• AES-128, AES-192, or AES-256

Key derivation function
• HMAC using any approved hash function
• CMAC using AES

Hash functions
• SHA-2 family (SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256)

• SHA-3 family (SHA3-224, SHA3-256, SHA3-384, and SHA3-512)

Message authentication codes (MACs)
• HMAC with key lengths ≥ 112 bits
• CMAC with AES
• GMAC with AES
• KMAC with key lengths ≥ 112 bits

16 | White Paper

1. C. Perrin, “The CIA Triad,” June 30, 2008.

2. RTCA, Inc., “Airworthiness Security Process Specification,”
2014, p. 21, standards.globalspec.com/std/9869201/RTCA%20
DO-326.

3. Seventh Framework Programme, “Security Requirements of
Vehicle Security Architecture,” June 2011, p. 26.

4. Department of Defense, “DoD Information Security Program:
Protection of Classified Information,” February 2012, p. 105,
www.dodig.mil/Portals/48/Documents/Policy/520001_vol3.
pdf.

5. National Institute of Standards and Technology, “Guide to
Industrial Control Systems (ICS) Security, Special Publication
800-82,” May 2015, p. 1, nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-82r2.pdf.

6. “Cybersecurity in Medical Devices,” October 2018, www.fda.
gov/media/119933/download.

7. Department of Health and Human Services, “Guidance to
Render Unsecured Protected Health Information Unusable,
Unreadable, or Indecipherable to Unauthorized Individuals,”
July 2013, www.hhs.gov/hipaa/for-professionals/breach-
notification/guidance/index.html.

8. F5 Labs, “What Is the CIA Triad?” July 2019, www.f5.com/labs/
articles/education/what-is-the-cia-triad.

9. Star Lab Corporation, “10 Properties of Secure Embedded
Systems,” July 2020, www.starlab.io/whitepaper-10-
properties.

10. “Information Security: FAA Needs to Address Weaknesses in
Air Traffic Control Systems,” Government Accounting Office,
January 29, 2015, www.gao.gov/products/GAO-15-221.

11. Trusted Computing Group, “Secure Embedded Platforms
with Trusted Computing: Automotive and Other Systems
in the Internet of Things Must Be Protected,” June 2012,
trustedcomputinggroup.org/wp-content/uploads/Secure-
Embedded-Platforms-with-Trusted-Computing-Automotive-
and-Other-Systems-in-the-Internet-of-Things-Must-Be-
Protected.pdf.

12. Committee on National Security Systems, “Use of Public
Standards for Secure Information Sharing,” October 1, 2012,
www.cnss.gov/CNSS/issuances/Policies.cfm.

13. National Security Agency, “Guide to Industrial Control Systems
(ICS) Security,” May 2015, nvl-pubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-82r2.pdf.

14. M. Scholl and A. Regenscheid, “Safeguarding Data Using
Encryption,” 2014, csrc.nist.gov/news_events/hipaa-2014/
presentations_day1/scholl_hipaa_2014_day1.pdf.

15. National Institute of Standards and Technology, 2015, p. 3.

16. Security Snobs, “Types of Locks,” securitysnobs.com/Types-
Of-Locks.html.

17. B. Schneier, “Class of Algorithms,” in Applied Cryptography,
John Wiley & Sons, Inc., 1996, p. 217.

18. E. Barker, “Recommendation for Key Management — Part 1:
General (Revision 5),” September 2015, pp. 62–66, https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r5.pdf.

19. E. Barker, “Transitions: Recommendation for Transitioning
the Use of Cryptographic Algorithms and Key Lengths,”
March 2019, pp. 7, 9–10, nvlpubs.nist.gov/nist-pubs/
SpecialPublications/NIST.SP.800-131Ar2.pdf.

20. E. Barker, “Recommendation for Key Management — Part
1: General (Revision 5),” September 2015, p. 33–46, https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r5.pdf.

21. National Institute of Standards and Technology, “Federal
Information Processing Standards Publication 197,” November
26, 2001, csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

22. E. Barker, “Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths,” March
2019, p. 7, nvlpubs.nist.gov/nist-pubs/SpecialPublications/
NIST.SP.800-131Ar2.pdf.

23. Internet Engineering Task Force, “IP Security (IPsec) and
Internet Key Exchange (IKE) Document Roadmap,” February
2011, tools.ietf.org/html/rfc6071.

24. Network Working Group, “The Transport Layer Security
(TLS) Protocol, Version 1.3,” August 2018, tools.ietf.org/html/
rfc8446.

25. Network Working Group, “HTTP over TLS,” May 2000, tools.
ietf.org/html/rfc2818.

26. K. McKay and D. Cooper, “Guidelines for the Selection,
Configuration, and Use of Transport Layer Security (TLS)
Implementations,” August 2019, nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-52r2. pdf.

27. P.R. Egli, “Internet Security,” February 15, 2011, p. 39, www.
indigoo.com/dox/itdp/10_Security/Internet-Security.pdf.

28. United States Computer Emergency Readiness Team,
“Understanding Denial-of-Service Attacks,” November 20,
2019, https://www.us-cert.gov/ncas/tips/ST04-015.

29. T. Hardjono and G. Kazmierczak, “Overview of the TPM Key
Management Standard,” Trusted Computer Group, p. 6,
trustedcomputinggroup.org/resource/overview-of-the-tpm-
key-management-standard.

REFERENCES

Note: All web links accessed March 2022

https://standards.globalspec.com/std/9869201/RTCA%20DO-326
https://standards.globalspec.com/std/9869201/RTCA%20DO-326
https://www.dodig.mil/Portals/48/Documents/Policy/520001_vol3.pdf
https://www.dodig.mil/Portals/48/Documents/Policy/520001_vol3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.fda.gov/media/119933/download
https://www.fda.gov/media/119933/download
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.hhs.gov/hipaa/for-professionals/breach-notification/guidance/index.html
https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://www.f5.com/labs/articles/education/what-is-the-cia-triad
https://www.starlab.io/whitepaper-10-properties
https://www.starlab.io/whitepaper-10-properties
https://www.gao.gov/products/gao-15-221
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Secure-Embedded-Platforms-with-Trusted-Computing-Automotive-and-Other-Systems-in-the-Internet-of-Things-Must-Be-Protected.pdf
http://www.cnss.gov/CNSS/issuances/Policies.cfm
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-82r2.pdf
https://csrc.nist.gov/presentations/2014/hipaa-2014-safeguarding-data-using-encryption
https://csrc.nist.gov/presentations/2014/hipaa-2014-safeguarding-data-using-encryption
https://securitysnobs.com/Types-Of-Locks.html
https://securitysnobs.com/Types-Of-Locks.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2818
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
http://www.indigoo.com/dox/itdp/10_Security/Internet-Security.pdf
http://www.indigoo.com/dox/itdp/10_Security/Internet-Security.pdf
https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://trustedcomputinggroup.org/resource/overview-of-the-tpm-key-management-standard/
https://trustedcomputinggroup.org/resource/overview-of-the-tpm-key-management-standard/

30. T2080 Product Brief, NXP, April 2014, www.nxp.com/docs/en/
product-brief/T2080PB.pdf.

31. R. Kissel, A. Regenscheid, M. Scholl, and K. Stine, “Guidelines
for Media Sanitization,” December 2014, nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800- 88r1.pdf.

32. SANS Institute, “Covert Data Storage Channel Using IP Packet
Headers,” February 2008, https://www.sans.org/reading-
room/whitepapers/covert/paper/2093.

33. Mileva, A. Velinov, and D. Stojanov, “New Covert Channels
in Internet of Things,” Securware 2018, eprints.ugd.edu.
mk/20423/1/securware_2018_2_10_30122.pdf.

34. E. Barker, M. Smid, D. Branstad, and S. Chokhani, “A
Framework for Designing Cryptographic Key Management
Systems,” August 2013, nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-130.pdf.

35. “Intel Digital Random Number Generator (DRNG) Software
Implementation Guide,” Intel, May 15, 2014, www.intel.com/
content/dam/develop/external/us/en/documents/drng-
software-implementation-guide-2-1-185467.pdf.

36. Freescale Semiconductor, “QorIQ P4080 Communications
Processor Product Brief,” September 2008, p. 23, www.nxp.
com/docs/en/product-brief/P4080PB.pdf.

37. OpenSSL wiki, “Random Numbers,” wiki.openssl.org/index.
php/Random_Numbers.

38. Information Technology Laboratory, “Federal Information
Processing Standards Publication, Secure Hash Standard
(SHS),” August 2015, nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.180-4.pdf.

39. J. Boyens et al, “Supply Chain Risk Management Practices for
Federal Information Systems and Organizations,” April 2015,
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
161.pdf.

40. G. Coker et al, “Principles of Remote Attestation,” web.cs.wpi.
edu/~guttman/pubs/good_attest.pdf.

41. Network Working Group, “The Kerberos Network
Authentication Service (V5),” July 2005, www.ietf.org/ rfc/
rfc4120.txt.

42. “Firewall (Computing),” en.wikipedia.org/wiki/Firewall_
(computing).

43. McAfee Labs, “141 Cybersecurity Predictions for 2020,” www.
forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-
predictions-for-2020/#623f8cb61bc5.

44. “Tamperproofing,” en.wikipedia.org/wiki/Tamperproofing.

45. E. Barker, “Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths,” March
2019, nvlpubs.nist.gov/nist-pubs/SpecialPublications/NIST.
SP.800-131Ar2.pdf.

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating
the digital transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability.

© 2022 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 04/2022

https://www.nxp.com/docs/en/product-brief/T2080PB.pdf
https://www.nxp.com/docs/en/product-brief/T2080PB.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
https://www.sans.org/white-papers/2093/
https://www.sans.org/white-papers/2093/
http://eprints.ugd.edu.mk/20423/1/securware_2018_2_10_30122.pdf
http://eprints.ugd.edu.mk/20423/1/securware_2018_2_10_30122.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-130.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-130.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/drng-software-implementation-guide-2-1-185467.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/drng-software-implementation-guide-2-1-185467.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/drng-software-implementation-guide-2-1-185467.pdf
https://www.nxp.com/docs/en/product-brief/P4080PB.pdf
https://www.nxp.com/docs/en/product-brief/P4080PB.pdf
https://wiki.openssl.org/index.php/Random_Numbers
https://wiki.openssl.org/index.php/Random_Numbers
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf
http://web.cs.wpi.edu/~guttman/pubs/good_attest.pdf
http://web.cs.wpi.edu/~guttman/pubs/good_attest.pdf
https://www.ietf.org/rfc/rfc4120.txt
https://www.ietf.org/rfc/rfc4120.txt
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Firewall_(computing)
https://www.forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-predictions-for-2020/?sh=a8ab7ef1bc56
https://www.forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-predictions-for-2020/?sh=a8ab7ef1bc56
https://www.forbes.com/sites/gilpress/2019/12/03/141-cybersecurity-predictions-for-2020/?sh=a8ab7ef1bc56
https://en.wikipedia.org/wiki/Tamperproofing
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

